

MELODI statement 2018 Gap analysis

MELODI (Multidisciplinary European Low Dose Initiative) is a European Platform dedicated to low dose ionizing radiation risk research. The purpose of the MELODI Association is to integrate national and European activities in low dose and low dose rate radiation research, to define priority scientific goals and to facilitate effective implementation of research. The MELODI Strategic Research Agenda (SRA) and Feasibility and Impact Analysis (Roadmap) identify these priority goals and the specific resources, infrastructures and training capabilities needed to further develop low-dose risk research. The current draft of the MELODI SRA is available here: http://www.melodi-online.eu/doc/MELODI SRA 2017_06102017.pdf

Prior to EU research funding calls, MELODI develops a short statement indicating its view on current research needs, which serves as an input to those responsible for defining call topics. In October 2017 the European Commission indicated its intention to open a EURATOM call that includes radiation protection. The proposed work programme includes topics NFRP-2018-8 for research and NFRP-2018-9 for review of previous activities. NFRP-2018-8 specifically indicates that a 'Gap analysis' will be required for each proposal and NFRP-2018-9 could be usefully informed by such an analysis. The SRA Working Group of MELODI consequently has undertaken a review of relevant EURATOM research undertaken (or underway) in Framework programmes 6 and 7 (FP6, FP7) and Horizon 2020 (H2020) identifying their relevance to the six key areas of research identified in the MELODI SRA and roadmap. This informed the identification of gaps that are considered as potential areas for research under NFRP-2018-8 call. A mature reflection and identification of knowledge gaps would require results of all projects to be available; this has not been possible in all cases as some projects have yet to come to completion. We also note that the NFRP-2018-8 call text indicates that the gap analysis included in proposals will be subject to evaluation. The MELODI SRA Working Group anticipates that its gap analysis will be of benefit to those applying to the call.

The areas defined by the MELODI SRA and roadmap that require further research are:

- To explore the shape of the dose-response relationship for radiation-induced health effects (Abbreviation: Shape)
- To understand the potential impact of individual susceptibility on radiation-induced health effects (Abbreviation: Susceptibility)
- To identify, develop and validate biomarkers for exposure, early and late effects for cancer or/and non-cancer diseases (Abbreviation: Biomarkers)
- To explore and define the role of epigenetic modifications in radiation-induced health effects (Abbreviation: Epigenetics)
- To explore the roles of specific target cells for radiation-induced late developing health effects (Abbreviation: Target cells)
- To understand the health effects of inhomogeneous dose distributions, radiation quality and internal emitters (Abbreviation: Inhomogeneity)

Review of FP6, FP7 & H2020 funded projects relevant to low dose risk research

Project	Title	Primary	MELODI area	Comments
acronym		disease	addressed	
		endpoint		
RISC-RAD	DNA damage	Cancer	Shape,	This project
	responses,		Susceptibility,	undertook a
	Genomic		(epigenetics)	wide range of
	instability and			experimental,
	Radiation-Induced			epidemiological
	Cancer: The			and modelling
	problem of risk at			work addressing
	low and protracted			cancer dose-
	doses (RISC-RAD)			response and
		-	a	susceptibility
GENE-RAD	Radiation	Cancer	Susceptibility,	Molecular
RISK	exposures at an		Biomarkers	epidemiological
	early age: impact			project on DNA
	of genotype on			repair gene
	breast cancer risk			variants and
				breast cancer
DAGE			01	risk
RACE	Radiotnerapy for	Circulatory	Snape	Clinical
	breast cancer and	diseases		epidemiological
	subsequent risk of			follow up of
	cardiovascular			radiotherapy
	events			
				circulatory
CENEDI	Conotia Dathwaya	Canaan	Cuccontibility	Coords for
GENERI-	for the Drediction	tissue	Biomarkora	biomarkars of
LUWKI	of the Effects of	reactions	(Shana)	response to low
	Ionicing Dediction	reactions	(Shape)	doso ovnosuro in
	Tomshig Kaulation:			normal and
	LOW DOSE			normai and

(i) FP6 projects

GENERI	Radiosensitivity and Risk to Normal Tissue after Radiotherapy	6	0	severe radiotherapy reactors
GENEPI- ENTB2	GENETIC pathways for the Prediction of the effect of Irradiation- European normal an tumour tissue bank and data base	Cancer, tissue reactions, circulatory disease	Susceptibility, Biomarkers	from radiotherapy patients. Infrastructural project
ALPHA-RISK	Quantification of cancer and non- cancer risks associated with multiple chronic radiation exposures: epidemiological studies, organ dose calculation and risk assessment	Cancer (circulatory diseases)	Shape, Inhomogeneity, Susceptibility	Epidemiological analysis of radon, uranium and plutonium risks
SOUL	Southern urals radiation risk research	Cancer, circulatory diseases	Shape, Inhomogeneity, (Biomarkers)	Epidemiological analysis of disease risk in Mayak plant workers and Techa river residents
GEN RISK-T	Genetic component of the low dose risk of thyroid cancer	Cancer	Susceptibility, Biomarkers, (Shape)	Experimental study to develop thyroid cancer model
NOTE	Non-targeted effects of ionising radiation	Cancer, circulatory diseases	Shape, Epigenetics	Experimental studies to investigate non- DNA targeted actions of radiation

(ii) FP7 projects

Project	Title	Primary	MELODI area	Comments
acronym		disease	addressed	
		endpoint		
ALLEGRO	Early and late	Cancer	Shape,	Out-of-field
	health risks to		Inhomogeneity	doses to normal
	normal/healthy			tissues
	tissues from the			delivered by a
	use of existing and			range of
	emerging			radiotherapy
	techniques for			techniques
	radiation therapy			

ANDANTE	Multidisciplinary evaluation of the cancer risk from neutrons relative to photons using stem cells and the induction of second malignant neoplasms following paediatric radiation therapy	Cancer	Inhomogeneity, Shape, Target cells	Study of risks from neutrons in radiotherapy
RISK	cardiovascular risks after low radiation doses	diseases	cells, (Epigenetics)	study of circulatory disease mechanisms
CEREBRAD	Cognitive and Cerebrovascular Effects Induced by Low Dose Ionising Radiation	Tissue reactions (cognitive effects), Circulatory diseases	Shape, Target cells, Inhomogeneity, (Epigenetics), (Biomarkers)	Epidemiological and experimental studies of cognitive and cerebrovascular effects of radiation, including in utero
CHILD MED RAD	Prospective cohort studies of children with substantial medical diagnostic exposure	Cancer	Shape, Susceptibility	Feasibility study for CT scan risk study in children
DARK-RISK	Studies on a cohort of Serbian children exposed to x- irradiation to determine the contribution of the non-coding genome to susceptibility at low doses	Cancer	Epigenetics, Susceptibility, Biomarkers	Epidemiological and experimental studies in <i>Tinea</i> <i>capitus</i> cohort; experimental work on Long non-coding RNAs seeking biomarkers of exposure
DoReMi	Low Dose Research towards Multidisciplinary Integration	Cancer, Circulatory diseases, lens opacities, tissue reactions	Shape, Susceptibility, (Target cells), Biomarkers, Epigenetics, Inhomogeneity	Large scale project that undertook feasibility studies covering all areas of interest to MELODI
EPI-CT	Epidemiological study to quantify risks for paediatric computerized	Cancer	Shape, Susceptibility, (Biomarkers)	Epidemiological investigation of cancer risk in children

EpiRadBio	tomography and to optimise doses Combining epidemiology and radiobiology to assess cancer risks in the breast, lung, thyroid and	Cancer	Shape, Target cells, Biomarkers, (Epigenetics), (Inhomogeneity)	undergoing CT scans, includes biomarker considerations, dosimetric aspects as well as clinical guidelines Project aimed to integrate radiobiological data with epidemiological data to improve
	digestive tract after exposures to ionizing radiation with total doses in the order of 100 mSv or below			risk assessment for cancer in specific organs
OPERRA- SOPRANO		Cancer, Circulatory diseases	Shape, Biomarkers, Epigenetics,	Systems biological analysis to define the early cellular low dose response and its variation
OPERRA- EURALOC		Cataract (lens opacity)	Shape	Epidemiological investigation of lens opacity amongst medical practitioners
OPERRA- DIMITRA		Cancer	Shape, Biomarkers, target cells	Experimental investigations to determine Cone- beam CT effects of stem cells and to identify salivary biomarkers in children
OPERRA- VIBRATO		Cancer, immune system effects	Biomarkers, Epigenetics, Target cells	Experimental study of immune system gene expression after low dose irradiation
PROCARDIO	Cardiovascular Risk from Exposure to Low-dose and Low-dose-rate Ionizing Radiation	Circulatory diseases	Shape, Biomarkers, Target cells, (Epigenetics)	Epidemiological and experimental investigations on cardiovascular

				disease risk and
				mechanisms
RENEB	Realizing the	Cancer	Biomarkers,	Development of
	European Network		Shape	a European
	in Biodosimetry			network for
				biodosimetry
				with main focus
				on emergency
				preparedness
				but of relevance
				as resource for
				low dose risk
				research and
				molecular
				epidemiology
RISK-IR	Risk, Stem Cells	Cancer	Target cells,	Studies of stem
	and Tissue Kinetics		Shape,	cell responses to
	– Ionising		Epigenetics	radiation at low
	Radiation			doses and dose
				rates
SOLO	Epidemiological	Cancer,	Shape,	Epidemiological
	Studies of Exposed	Circulatory	Inhomogeneity,	studies of
	Southern Urals	diseases	(Biomarkers)	Mayak plant
	Populations			workers for Pu
				cancer and
				circulatory
				disease risk
STORE	Sustaining access	All	All (potentially)	Provision of
	to Tissues and data	(potentially)		database and
	from			archive for
	Radiobiological			materials from
	Experiments			radiobiological
				and
				epidemiological
				studies

(iii) H2020 projects

Project	Title	Primary	MELODI	Comments
acronym		disease	area	
		endpoint	addressed	
CONCERT- LDLENSRAD	Towards a full mechanistic understanding of low dose radiation induced cataracts	Cataract	Shape, Susceptibility, Biomarkers	Ongoing study into quantitative and mechanistic aspects of low does radiation
				formation
CONCERT- LEUTRACK		Cancer	Epigenetics, Shape, Biomarkers	Project just starting on role of microvesicles in radiation leukaemogenesis

CONCERT- SEPARATE	Systemic Effects of	Biomarkers of partial	Omics, Shape	Project just
	Partial-body Exposure to Low Radiation Doses	body exposure	Inhomogeneity	effects of partial body exposure and role of microvesicles
MEDIRAD	Implications of medical low dose radiation exposure	Cancer, Circulatory diseases	Shape, Biomarkers, Epigenetics	Large multi- partner project recently started including epidemiological studies of CT risk and circulatory disease risk plus biomarker discovery work

Clearly there have been many projects supported under FP6, FP7 and H2020 that address issues highlighted by MELODI as key areas requiring research to improve low dose and low dose rate radiation health risk assessment. All funded projects align with one or more of MELODI's key areas as identified in the SRA and roadmap. All have contributed to advancement of the field and building the scientific evidence base for low dose/dose rate risk assessment. All diseases/health effects of actual and potential relevance to low dose risk – cancer, circulatory disease, cognitive effects and cataract are considered and a shift in emphasis amongst funded projects towards the non-cancer diseases can be seen. While all projects have made progress in building the evidence base as noted, there remain areas where additional work could be beneficial; these are considered in the gaps described below.

Gap Analysis

Following consideration of the projects listed above it is clear that there are evidence gaps that remain and areas of research that have not been fully considered in the past. On this basis gaps are identified below under each of the key areas identified by MELODI in its SRA and roadmap.

- 1. To explore the shape of the dose-response relationship for radiation-induced health effects
 - Health risk studies amongst populations exposed to background and environmental sources of radiation, and experimental model studies using relevant exposure parameters
 - Studies of second cancers arising in populations treated by radiotherapy, and relevant experimental model studies
 - Health risk and experimental model studies considering co-exposures to radiation and other agents
 - Studies that improve organ-specific cancer risk estimates
 - Studies that will reduce exposure assessment measurement errors in epidemiological analyses
- 2. To understand the potential impact of individual susceptibility on radiation-induced health
 - Studies that lead to the identification and validation of biomarkers of disease risk and/or susceptibility
 - Studies that identify and validate cohorts suitable for molecular/biomarker epidemiological studies
 - Studies of tissue level effects and the role of individual differences in tissue architecture that impact on susceptibility to radiogenic diseases

- Studies that potentially lead to the identification of biomarkers of resistance to radiation health effects
- *3.* To identify, develop and validate biomarkers for exposure, early and late effects for cancer or/and non-cancer diseases
 - Studies that lead to the identification and validation of sensitive, rapid and reliable biomarkers of exposure
 - Studies that lead to the identification and validation of biomarkers of health risk/health risk susceptibility/resistance
- 4. To explore and define the role of epigenetic modifications in radiation-induced health effects
 - Studies that provide clear evidence for or against a role for epigenetic processes operating in radiation carcinogenesis, and dose/dose-rate/radiation quality information
 - Studies that provide clear evidence for or against a role for epigenetic processes operating in circulatory diseases/cataract/cognitive dysfunction, and dose/dose-rate/radiation quality information
 - Studies that provide clear evidence for or against the operation of ageing/senescence processes in radiogenic disease
- 5. To explore the roles of specific target cells for radiation-induced late developing health effects
 - Studies that identify and quantify the stem/progenitor cell populations at risk for all radiogenic cancer types and non-cancer diseases
 - Studies that provide quantitative information on the processes contributing to radiogenic diseases in relevant stem/progenitor cell populations
 - Studies employing heterotypic 3D cell/tissue/organ culture and animal models to examine radiation effects and sensitivity in stem cells
- 6. To understand the health effects of inhomogeneous dose distributions, radiation quality and internal emitters
 - Studies that consider organ dose in relation to intra-organ dose distribution in relation to health effects
 - Further investigation of sub-cellular dose distribution to elucidate potential targets for radiation action related to health effects other than DNA
- 7. Infrastructures gap: Optimizing the quality of results, data integration and management via

infrastructures networking

- Network of infrastructures for radiation protection exposure platforms, databases, cohorts, sample banks, analytical platforms, models and tools
- Improving the reproducibility and robustness of results
- Harmonization of SOPs , shared standards and inter-comparisons, mobilization of European researchers when needed (eg RENEB)
- Open access data, repositories and publication
- Open access and review of research papers providing view on dosimetry, experimental design and statistical issues (eg FREDERICA)

MELODI also encourages education and training in disciplines to maintain, develop and improve skills amongst the low dose health risk research community. In this regard it is important to encourage training by those in relevant more fundamental sciences. The skills amongst the MELODI community in data management, data mining and bioinformatics are judged to be suitable for further development.

In terms of infrastructures for research, MELODI encourages, where appropriate, (1) the use of archived biological materials from prior research, particularly where EU funded, (2) the integration of experienced laboratory networks (eg RENEB) improving the robustness of results via intercomparisons, (3) the integration of expertise from outside the conventional fields of radiation research, where appropriate, (4) use of the wider EU scientific infrastructures for, amongst other things genomics, microscopy, structural biology, computing where relevant, (5)

where new infrastructures are proposed/developed, the provision of access to the wider community of researchers.