Eye lens dosimetry: results from the ELDO project

Lara Struelens1, Isabelle Clairand2, Jérémie Dabin1, Jad Farah2, Christina Koukorava3, Vanhavere Filip1

1 Belgian Nuclear Research Centre (SCK•CEN), Belgium
2 Institute of Radiological Protection and Nuclear Safety (IRSN), France
3 Greek Atomic Energy Commission (GAEC), Greece
European ELDO Project

"European epidemiological study of radiation-induced cataracts for interventional cardiologists - Methodology implementation"

- Several European countries create a national cohort
- Joined analysis of the pooled European cohort
 ⇒ To elucidate further the reduction of the threshold for cataract (ICRP-118)
 ⇒ To confirm if there is a threshold

NEED FOR GOOD DOSIMETRY

USING THE SAME PROTOCOL
- Epidemiology part
- Dosimetry part

Acknowledgement: Funded by the DoReMi Network of Excellence
Eye lens dosimetry – 2 approaches

Approach #1: Correlation to Hp(10)

Estimating eye lens dose from whole body dose from routine monitoring → only dosimetric data available for past practices

Need for Hp(10) values above the lead apron

Approach #2: Recent data to past practices

Accounting for the evolution of X-ray systems

Need for precise information on workload, procedures, used equipment, etc.
Approach #1: Correlation to Hp(10)
Eye lens dosimetry – APPROACH 1

- Measurement of eye lens doses and whole body doses in clinical conditions
 - Operator: Rando-Alderson phantom
 - Patient: PMMA plates
 - Passive and active dosemeters
 - Measurements above the lead apron
 - Eye level
 - Collar level
 - Chest level
 - Waist level
 - Left – middle – right side

- ~ 50 experiments/set ups

Eye lens dosimetry – APPROACH 1

- Clinical conditions
 - Different x-ray beam projections
 - Different operator positions with respect to the x-ray field
 - Different x-ray beam energies
 - Mono-plane and bi-plane x-ray systems
 - Without protective equipment (lead glasses and ceiling-mounted screen)

\[\text{Result} = \frac{\text{eye lens dose}}{\text{whole body dose}} \text{ and associated uncertainty} \]

Based on spread between ratio's for different clinical configurations

Eye lens dosimetry – APPROACH 1

Ratio of average **left eye** lens dose and whole body dose measured at different locations, considering **all projections and operator positions**.

<table>
<thead>
<tr>
<th>Location</th>
<th>Collar L</th>
<th>Collar M</th>
<th>Collar R</th>
<th>Chest L</th>
<th>Chest M</th>
<th>Chest R</th>
<th>Waist L</th>
<th>Waist M</th>
<th>Waist R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>3.3</td>
<td>2.1</td>
<td>11.5</td>
<td>0.8</td>
<td>1.2</td>
<td>2.5</td>
<td>1.5</td>
<td>1.8</td>
<td>8.0</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>42%</td>
<td>48%</td>
<td>81%</td>
<td>90%</td>
<td>73%</td>
<td>100%</td>
<td>159%</td>
<td>143%</td>
<td>147%</td>
</tr>
</tbody>
</table>

Best correlation

Ratio of average **left eye** lens dose and whole body dose measured at different locations, considering projections and operator positions for **CA&PTCA and RF ablations**.

<table>
<thead>
<tr>
<th>Location</th>
<th>Collar L</th>
<th>Collar M</th>
<th>Collar R</th>
<th>Chest L</th>
<th>Chest M</th>
<th>Chest R</th>
<th>Waist L</th>
<th>Waist M</th>
<th>Waist R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>4.0</td>
<td>2.6</td>
<td>12.8</td>
<td>0.7</td>
<td>1.0</td>
<td>1.9</td>
<td>0.5</td>
<td>0.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>41%</td>
<td>40%</td>
<td>56%</td>
<td>52%</td>
<td>56%</td>
<td>50%</td>
<td>46%</td>
<td>64%</td>
<td>101%</td>
</tr>
</tbody>
</table>

Reduced uncertainties

Eye lens dosimetry – APPROACH 1

- Monte Carlo simulations: efficiency of the protective equipment

- Size, thickness and shape of **lead glasses**

Eye lens dosimetry – APPROACH 1

- Monte Carlo simulations: efficiency of the protective equipment

- Shape and position of ceiling suspended screens

Eye lens dosimetry – APPROACH 1

- Monte Carlo simulations: efficiency of the protective equipment

- For all possible x-ray projections, operator positions and tube configurations
- > 100 calculations

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left eye</td>
<td>0.18</td>
<td>0.57</td>
<td>0.44</td>
</tr>
<tr>
<td>Right eye</td>
<td>0.85</td>
<td>0.68</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Monte Carlo simulations: efficiency of the protective equipment

- For all possible x-ray projections, operator positions and tube configurations
- > 100 calculations

Result = correction coefficients considering effect of protection and associated uncertainty

Based on spread between coefficients for the variation in protection efficiency

<table>
<thead>
<tr>
<th>With / without</th>
<th>Left eye</th>
<th>Right eye</th>
<th>Collar</th>
<th>Chest</th>
<th>Waist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead glasses</td>
<td>0.37</td>
<td>0.75</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67%</td>
<td>34%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiling shields</td>
<td>0.45</td>
<td>0.42</td>
<td>0.53</td>
<td>0.63</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>86%</td>
<td>85%</td>
<td>71%</td>
<td>52%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Eye lens dosimetry – APPROACH 1

Summary

- The correlation between eye lens and whole body dose depends on
 - Type of procedure
 - The position of the whole body dosemeter (always ABOVE lead apron)
 - The working practice
 - position of operator
 - The use of protective equipment

- Assessing eye lens dose from whole body dose can introduce large uncertainties
 - 40% to 160% without protection
 - Additional 35% to 85% for variation in protection efficiency

- Of interest for future retrospective epidemiological studies
- Not advisable for routine monitoring
Approach #2: Recent data to past practices
Eye lens dosimetry – APPROACH 2

- ORAMED database of eye lens dose measurements
 - 1329 eye lens dose measurements
 - 6 European countries; > 40 hospitals
 - Common dosimetry protocol
 - Several interventional procedures

 ⇒ Representative for current practices

- Adjusting recent data to past practices
 - Evolution of x-ray systems and interventional procedures
 - Interviews with manufacturers and interventional radiologists/cardiologists
Eye lens dosimetry – APPROACH 2

- Evolution of x-ray systems before year 2000:
 - **Beam filtration** → no significant effect on dose (less than 10%)
 - Aluminium filtration from [3,0 – 7,0] mm Al
 - Copper filtration from [0 – 0,9] mm Cu
 - **Dose at the detector** → a factor ~2 on dose
 - Beginning of 2000
 - More and more interest in radiation protection of the patient: doses at the detector reduced with around 60% compared to the first systems
 - Improvements of the detectors itself: evolution from image intensifiers to flat panel detectors
 - **Change in frame rate for image acquisition** → a factor ~2 on dose
 - 1980-1990: 50 F/S
 - 1990-2000: 30 F/s
 - > 2000: 15 F/s
Evolution of x-ray systems before year 2000:

- Beam filtration → no significant effect on dose (less than 10%)
- Dose at the detector → a factor ~2 on dose
- Change in frame rate for image acquisition → a factor ~2 on dose

For procedures performed before 2000: a **correction factor of 2 to 4** identified, depending on type of procedure

Information on working practice and type of procedures is needed
- Protective equipment, type of x-ray system, work load, ...
The ELDO project developed a dosimetry protocol for retrospective assessment of eye lens doses for interventional cardiologists

- 2 approaches, depending on available information

Approach 1: based on whole body doses above lead apron
- Ratio [eye lens/whole body] dose determined
- Correction factors for the use of protective equipment

Approach 2: based on recent eye lens dose measurements
- Detailed information needed on working practices (also for the past)
- Corrections identified for procedures performed before the year 2000

Both approaches of major interest for future epidemiological studies
- Further validation of both approaches needed

Acknowledgement: Funded by the DoReMi Network of Excellence
Thank you for your attention !!!
PLEASE NOTE!
This presentation contains data, information and formats for dedicated use ONLY and may not be copied, distributed or cited without the explicit permission of the SCK•CEN. If this has been obtained, please reference it as a “personal communication. By courtesy of SCK•CEN”.

SCK•CEN
Studiecentrum voor Kernenergie
Centre d'Etude de l'Energie Nucléaire
Belgian Nuclear Research Centre

Stichting van Openbaar Nut
Fondation d'Utilité Publique
Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS
Operational Office: Boeretang 200 – BE-2400 MOL